-->

KARAKTERISTIK DATA WARE HOUSE



1. Berorientasi Subjek.
Data warehouse terorganisasi di seputar subjek kunci (atau entitas-entitas peringkat tinggi) dalam perusahaan, Data warehouse adalah tempat penyimpanan berdasakan subyek bukan berdasakan aplikasi. Subyek merupakan bagian dari suatu perusahaan. Contoh subyek pada perusahaan manufaktur adalah penjualan, konsumen, inventori, daln lain sebagainya.
Contoh lain misalnya di bank, aplikasi kredit mengotomasi fungsi-fungsi:verifikasi lamaran dan credit checking, pemeriksaan kolateral, approval, pendanaan, tagihan, dan seterusnya. Didalam data warehouse data-data yang dihasilkan dari proses kredit ini, diatur kembali (dikelompokkan) dan diintegrasikan (digabung) dengan data-data dari fungsi-fungsi lain, agar berorientasi pada misalnya nasabah dan produk.
Gambar dibawah ini merupakan perbedaan mengenai data warehouse dan database operasional.
2. Terintegrasi
Data yang tersimpan dalam data warehouse didefinisikan menggunakan konversi penamaan yang konsisten, format-format, struktur terkodekan, serta karakteristik-karakteristik yang berhubungan, Sumber data yang ada dalam data warehouse tidak hanya berasal dari database operasional (internal source) tetapi juga berasal dari data diluar sistem (external source). Data pada sumber berbeda dapat di-encode dengan cara yang berbeda. Sebagai contoh, data jenis kelamin dapat di-enkode sebagai 0 dan 1 di satu tempat dan ”m” dan ”f” di tempat lain.
Contoh lain misalnya : Data dari macam-macam aplikasi transaksi (untuk bank misalnya: tabungan, kredit, rekening koran) semua mengandung data nasabah, ada yang sama ada yang spesifik (yang sama misalnya: nama dan alamat, yang spesifik misalnya: untuk kredit ada kolateral, untuk rekening koran ada overdraft) didalam data warehouse data-data yang sama harus diintegrasikan disatu database, termasuk misalnya diseragamkan formatnya (sederhana tetapi paling sering terjadi – aplikasi-aplikasi sering dibeli vendor berbeda, dibuat dengan/dijalankan di teknologi berbeda-beda)

3. Memiliki dimensi waktu (Time variant)
Data yang tersimpan dalam data warehouse mengandung dimensi waktu yang mungkin digunakan sebagai rekaman bisnis untuk tiap waktu tertentu, Data warehouse menyimpan sejarah (historical data). Bandingkan dengan kebutuhan sistem operasional yang hampir semuanya adalah data mutakhir! Waktu merupakan tipe atau bagian data yang sangat penting didalam data warehouse.
Didalam data warehouse sering disimpan macam-macam waktu, seperti waktu suatu transaksi terjadi/dirubah/dibatalkan, kapan efektifnya, kapan masuk ke komputer, kapan masuk ke data warehouse; juga hampir selalu disimpan versinya, misalnya terjadi perubahan definisi kode pos, maka yang lama dan yang baru ada semua didalam data warehouse kita. Sekali lagi, data warehouse yang bagus adalah yang menyimpan sejarah.

4. Non-volatile
Data yang tersimpan dalam data warehouse diambil dari system operasional yang sedang berjalan, tetapi tidak dapat diperbaharui (di-update) oleh pengguna (bersifat ‘hanya-baca), Sekali masuk kedalam data warehouse, data-data, terutama data tipe transaksi, tidak akan pernah di update atau dihapus (delete) Terlihat, bahwa keempat karakteristik ini saling terkait kesemuanya harus diimplementasikan agar suatu data warehouse bisa efektif memiliki data untuk mendukung pengambilan-keputusan. Dan, implementasi keempat karakteristik ini membutuhkan struktur data dari data warehouse yang berbeda dengan database sistem operasional.
Data dalam database operasional akan secara berkala atau periodik dipindahkan kedalam data warehouse sesuai dengan jadwal yang sudah ditentukan. Misal perhari, perminggu, perbulan, dan lain sebagainya. Sekali masuk ke dalam data warehouse, data adalah read-only . Pada gambar 2 dibawah ini bisa dilihat bahwa database OLTP bisa dibaca, diupdate, dan dihapus. Tetapi pada database data warehouse hanya bisa dibaca.
5. Ringkas
Jika diperlukan, data operasional dikumpulkan ke dalam ringkasan-ringkasan
6. Granularity
Pada sistem operasional data dibuat secara real-time sehingga untuk mendapatkan informasi langsung dilakukan proses query. Pada data warehouse pada menganalisis harus memperhatikan level-of-detail misalkan perhari, ringkasan perbulan, ringkasan per-tiga-bulan.
7. Tidak ternormalisasi
Data di dalam sebuah data warehouse biasanya tidak ternormalisasi dan sangat redundan.
Dasar dari suatu data warehouse adalah suatu data yang besar yang mengandung informasi bisnis. Data-data yang ada di dalam data warehouse bisa berasal dari banyak sumber, misalkan dari database operasional atau transaksional dan sumber dari luar misalkan dari web, penyedia jasa informasi, dari perusahaan lain, dan lain sebagainya.


0 Response to "KARAKTERISTIK DATA WARE HOUSE"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel